MATH 245 S17, Exam 3 Solutions

1. Carefully define the following terms: recurrence, order of a recurrence, big Theta, set equality.
A recurrence is a sequence in which all but finitely many terms are defined in terms of its previous terms. The order of a recurrence is the number of steps back in the recurrence that need to be known to compute each term. Given two sequences a_{n}, b_{n}, we say that a_{n} is big Theta of b_{n} if both $a_{n}=O\left(b_{n}\right)$ and $b_{n}=O\left(a_{n}\right)$. Two sets are equal if they contain the same elements.
2. Carefully define the following terms: Associativity of \cup Theorem, De Morgan's Law for Sets Theorem, power set, Cantor's Theorem.
The Associativity of \cup Theorem says that for any sets R, S, T, we have $R \cup(S \cup T)=$ $(R \cup S) \cup T$. The De Morgan's Law for Sets Theorem says that for any sets R, S, U with $R \subseteq U$ and $S \subseteq U$, both $(R \cup S)^{c}=R^{c} \cap S^{c}$ and $(R \cap S)^{c}=R^{c} \cup S^{c}$. Given a set S, the power set of S is the set whose elements are all the subsets of S. Cantor's Theorem says that for any set S, S is not equicardinal with its power set 2^{S}.
3. Let S, T be sets. Prove that $S \backslash T \subseteq S$.

Let $x \in S \backslash T$. Hence $x \in S \wedge x \notin T$. By simplification, $x \in S$.
4. Prove that $n+100=O(n)$. Note that the Classification Theorem does not help.

We need specific choices of n_{0}, M; many solutions are possible. One choice is $n_{0}=$ $50, M=3$. Now, let $n \geq n_{0}=50$. We have $|n+100|=n+100 \leq n+2 n=3 n=3|n|$.
5. Suppose an algorithm has runtime specified by recurrence relation $T_{n}=5 T_{n / 2}+n^{2}$. Determine what, if anything, the Master Theorem tells us.

In the notation of the Master Theorem, $a=5, b=2, c_{n}=n^{2}$. We calculate $d=\log _{2} 5$, and note that $d>\log _{2} 4=2$. Hence, we can take $d^{\prime}=2<d$. Certainly $c_{n}=n^{2}=$ $O\left(n^{2}\right)=O\left(n^{d^{\prime}}\right)$. Hence the "small c_{n} " case of the Master Theorem applies, telling us that $T_{n}=\Theta\left(n^{d}\right)=\Theta\left(n^{\log _{2} 5}\right)$.
6. Let S, T be sets. Prove that $S \times T$ is equicardinal with $T \times S$.

We need to find an explicit pairing of $S \times T$ with $T \times S$. The natural one is $(x, y) \leftrightarrow$ (y, x), for every $x \in S$ and $y \in T$. In Chapter 13 we will have the tools to prove that this is a pairing; for now finding it is enough.
7. Set $R=\{1,2,3,4,5\}, S=\{4,5,6,7\}, U=\{1,2,3,4,5,6,7,8,9,10\}$. Calculate $\mid\left(R^{c} \cup\right.$ $S)^{c} \cup\left(S^{c} \backslash R\right)^{c} \mid$. Be sure to justify your answer.
For convenience, let $[a, b]$ denote all the integers between a and b, inclusive. Step by step: $R^{c}=[6,10] . \quad R^{c} \cup S=[4,10] . \quad\left(R^{c} \cup S\right)^{c}=[1,3]$. Now, $S^{c}=[1,3] \cup[8,10]$. $S^{c} \backslash R=[8,10] .\left(S^{c} \backslash R\right)^{c}=[1,7]$. Finally $\left(R^{c} \cup S\right)^{c} \cup\left(S^{c} \backslash R\right)^{c}=[1,7]$, so the answer is $|[1,7]|=|\{1,2,3,4,5,6,7\}|=7$.
8. Solve the recurrence defined as $a_{0}=a_{1}=2, a_{n}=4 a_{n-1}-4 a_{n-2}(n \geq 2)$.

The characteristic equation is $r^{2}=4 r-4$, which factors as $(r-2)^{2}=0$. Hence there is a double root, and the general solution is $a_{n}=A 2^{n}+B n 2^{n}$. We use the initial conditions to get $2=a_{0}=A 2^{0}+B \cdot 0 \cdot 2^{0}=A$, and $2=a_{1}=A 2^{1}+B \cdot 1 \cdot 2^{1}=2 A+2 B$. This system has solution $A=2, B=-1$, so the specific solution is $a_{n}=2 \cdot 2^{n}-n 2^{n}$ or $a_{n}=2^{n+1}-n 2^{n}$.
9. Let S, T be sets. Prove that $S \Delta T \subseteq S \cup T$.

SOLUTION 1: Let $x \in S \Delta T$. Then $(x \in S \wedge x \notin T) \vee(x \notin S \wedge x \in T)$. We have two cases:
(Case $x \in S \wedge x \notin T$): By simplification, $x \in S$. By addition, $x \in S \vee x \in T$. Hence $x \in S \cup T$.
(Case $x \notin S \wedge x \in T$): By simplification, $x \in T$. By addition, $x \in S \vee s \in T$. Hence $x \in S \cup T$.
SOLUTION 2: We apply Thm 8.12, which states that $S \Delta T=(S \cup T) \backslash(S \cap T)$. We then apply the third problem on this exam, to conclude that $(S \cup T) \backslash(S \cap T) \subseteq(S \cup T)$. Combining these two gives the desired result.
10. Let R, S, T be sets. Prove that $R \times(S \cap T) \subseteq(R \times S) \cap(R \times T)$.

Let $x \in R \times(S \cap T)$. Then $x=(a, b)$, where $a \in R$ and $b \in S \cap T$. Hence $b \in S \wedge b \in T$. We will simplify this statement twice. By simplification the first time, $b \in S$, and hence $(a, b) \in R \times S$. By simplification the other way, $b \in T$, and hence $(a, b) \in R \times T$. Now, by conjunction, $((a, b) \in R \times S) \wedge((a, b) \in R \times T)$. Hence, $(a, b) \in(R \times S) \cap(R \times T)$. Thus $x \in(R \times S) \cap(R \times T)$.

